■2010 年 東京工業大学(前期) **■**

- 1 $f(x) = 1 \cos x x \sin x$ とする.
- (1) $0 < x < \pi$ において , f(x) = 0 は唯一の解を持つことを示せ .
- (2) $J=\int_0^\pi \left|f(x)\right|dx$ とする.(1) の唯一の解を α とするとき , J を $\sin\alpha$ の式で表せ .
- (3) (2) で定義された I と $\sqrt{2}$ の大小を比較せよ.
- a を正の整数とする.正の実数 x についての方程式

$$(*) x = \left[\frac{1}{2}\left(x + \frac{a}{x}\right)\right]$$

が解を持たないような a を小さい順に並べたものを a_1, a_2, a_3, \cdots とする.ここに $[\]$ はガウス記号で,実数 u に対し,[u] は u 以下の最大の整数を表す.

- (1) a=7,8,9 の各々について (*) の解があるかどうかを判定し,ある場合は解xを求めよ.
- (2) a_1, a_2 を求めよ.
- (3) $\sum_{n=1}^{\infty} \frac{1}{a_n}$ を求めよ.
- 1 から n までの数字がもれなく一つずつ書かれた n 枚のカードの束から同時に 2 枚のカードを引く.このとき,引いたカードの数字のうち小さい方が 3 の倍数である確率を p(n) とする.
- (1) p(8) を求めよ.
- (2) 正の整数 k に対し p(3k+2) を k で表せ .
- 4 a を正の定数とする.原点を O とする座標平面上に定点 $A=A(a,\,0)$ と , A と異なる動点 $P=P(x,\,y)$ をとる.次の条件

A から P に向けた半直線上の点 Q に対し $\dfrac{AQ}{AP} \leq 2$ ならば $\dfrac{QP}{OQ} \leq \dfrac{AP}{OA}$

を満たす P からなる領域を D とする D を図示せよ D

出題範囲と難易度

- 1 標準 III 微分法の応用・積分法
- 2 | * 難 | I 整数問題・III 数列の極限
- 3 標準 A 確率
- 4 | は難 | II 図形と方程式

略解

- 1 (1) 証明は省略
 - $(2) \quad J = 2\sin\alpha$
 - $(3) \quad J > \sqrt{2}$
- 2 (1) $\begin{cases} a = 7 \text{ のとき} & x = 2\\ a = 8 \text{ のとき} & \text{解なし} \\ a = 9 \text{ のとき} & x = 3 \end{cases}$
 - (2) $a_1 = 3$, $a_2 = 8$
 - (3) $\sum_{n=1}^{\infty} \frac{1}{a_n} = \frac{3}{4}$
- **3** (1) $p(8) = \frac{1}{4}$
 - (2) $p(3k+2) = \frac{k}{3k+2}$
- 右図斜線部分で,境界は原点と点(a,0)のみ含まない.

