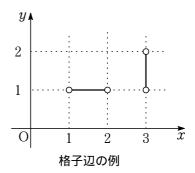
問題と分析

◀1998 年 大阪大学(前期)▶

♠ 理系学部

- **1** 座標平面において,x 座標とy 座標がともに整数である点を格子点という.また,2 つの格子点を結ぶ長さ1 の線分から両端の点を除いたものを格子辺という.次の問いに答えよ.
- (1) 点 P(630, 5400) を通る直線 y=ax (a は定数) は $0 \le x \le 630$ の範囲で何個の格子辺と交わるか .
- (2) n を 2 以上の整数とする . 点 $P(630,\,5400)$ を通る曲線 $y=bx^n$ (b は n により定まる定数)は $0 \le x \le 630$ の範囲で何個の格子辺と交わるか .



2 *n* を 1 以上の整数とする .*n* 次の整式

$$f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_k x^{n-k} + \dots + a_{n-1} x + a_n$$

とその導関数 f'(x) の間に nf(x)=(x+p)f'(x) という関係があるとする.ただし,p は定数である.このとき, $f(x)=a_0(x+p)^n$ であることを示せ.

3

(1) a を 1 より大きい実数とする .0 以上の任意の実数 x に対して次の不等式が成り立つことを示せ $.\log 2+\frac{x}{2}\log a \le \log(1+a^x) \le \log 2+\frac{x}{2}\log a + \frac{x^2}{8}(\log a)^2$

ただし,対数は自然対数である.

- (2) $n=1,\,2,\,3,\,\cdots$ に対して $a_n=\left(\frac{1+\sqrt[n]{3}}{2}\right)^n$ とおく .(1) の不等式を用いて極限 $\lim_{n\to\infty}a_n$ を求めよ .
- 平面上において、7点 A、P、Q、R、S、R′、S′を右図のようにとる.ただし、 $AP=a,\quad PQ=b,\quad QR=QR'=c,\quad RS=R'S'=d,$ $\angle APQ=\angle SRQ=\angle S'R'Q=\alpha\quad (0\leq\alpha\leq\pi)$ $\angle RQP=\angle PQR'=\beta\quad (0\leq\beta\leq\pi)$

である.このとき $\mathrm{AS}^2 - \mathrm{AS'}^2$ を $\sin lpha, \sin eta$ および a, b, c, d を用いて表せ.

- 座標空間において,平面 $z=\sqrt{2}$ 上にある半径 $\sqrt{2}$,中心 $(0,0,\sqrt{2})$ の円を C_1 ,平面 $z=-\sqrt{2}$ 上に ある半径 $\sqrt{2}$,中心 $(0,0,-\sqrt{2})$ の円を C_2 とする.また,空間内の点 P(x,y,z) に対し,円 C_1 上を動く 点 Q と P の距離の最小値を m ,円 C_2 上を動く点 R と P の距離の最大値を M とする.次の問いに答えよ.
- (1) $r = \sqrt{x^2 + y^2}$ とおくとき , m と M を r および z で表せ .
- (2) $|M-2\sqrt{6}| \geq m$ という条件を満たす点 ${
 m P}$ の範囲を H とする . 図形 H の体積を求めよ .

♠ 文系学部

1 平面上の 4 点 O, P, Q, R が条件 OP=2, OQ=3, $\angle POQ=60^\circ$, $\overrightarrow{OP}+\overrightarrow{OQ}+\overrightarrow{OR}=\overrightarrow{0}$ を満たすとする.線分 OR の長さと $\cos \angle POR$ の値を求めよ.

- 単位円周上の 3 点 $P(\cos\theta,\sin\theta)$, $Q(\cos2\theta,\sin2\theta)$, $R(\cos4\theta,\sin4\theta)$ を考える $.\theta$ が 0° から 360° まで動くとき PQ^2+QR^2 がとる値の範囲を求めよ .
- 放物線 $y=x^2+1$ 上に点 P をとる.原点 O と P を結ぶ線分 OP を $t^2:(1-t^2)$ (0 < t < 1) に内分する点を Q とする.次の問いに答えよ.
- (1) 点 P が放物線上を動くとき点 Q が描く曲線 C の方程式を求めよ.
- (2) 放物線 $y=x^2+1$ と曲線 C が囲む図形の面積 S を求めよ.
- (3) 0 < t < 1 における S の最大値を求めよ.

出題範囲と難易度

♣ 理系学部

- 2 標準 A 整式・III 微分法
- 3 標準 III 数列の極限
- **4** 標準 B ベクトル(平面)
- 5 | *難 | III 積分法の応用

♣ 文系学部

- 1 標準 B ベクトル(平面)
- **2** 標準 II 三角関数
- 3 標準 II 図形と方程式・微分積分

◇ 理系学部

1 (1) 5850 (個)

$$(2)$$
 $\left\{ egin{array}{ll} n=2\ {\it o}$ とき $5970\ (個) \ n=3\ {\it o}$ とき $6018\ (個) \ n\geq 4\ {\it o}$ とき $6028\ (個) \end{array}
ight.$

- 2 証明は省略
- 3 (1) 証明は省略

$$(2) \quad \lim_{n \to \infty} a_n = \sqrt{3}$$

$$AS^2 - AS'^2 = 4(ac - bd) \sin \alpha \sin \beta$$

5 (1)
$$m = \sqrt{(r - \sqrt{2})^2 + (z - \sqrt{2})^2}$$
, $M = \sqrt{(r + \sqrt{2})^2 + (z + \sqrt{2})^2}$ (2) $\frac{16\sqrt{3}}{3}\pi$

◇ 文系学部

1 OR =
$$\sqrt{19}$$

$$\cos \angle POR = -\frac{7\sqrt{19}}{38}$$

$$\cos \angle POR = -\frac{7\sqrt{19}}{38}$$

$$0 \le PQ^2 + QR^2 \le \frac{25}{4}$$

3 (1) 放物線 :
$$y = \frac{1}{t^2}x^2 + t^2$$

(2)
$$S = -\frac{4}{3}t^3 + \frac{4}{3}t$$

$$(3) \quad \frac{8\sqrt{3}}{27} \quad \left(t = \frac{1}{\sqrt{3}}\right)$$